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Osteopontin expression in human cyclosporine toxicity
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Osteopontin expression in human cyclosporine toxicity. number of diverse biological functions involving cell ad-
Background. Osteopontin is a secreted phosphoprotein that hesion, migration, and signaling [4–7]. Originally isolated

has a number of diverse biological functions, including cell signal- from bone, osteopontin expression has been demon-
ing, mediation of cell adhesion, migration, and chemoattraction

strated in a number of different tissues, including kidney,of monocytes/macrophages. Up-regulation of osteopontin ex-
lung, liver, bladder, pancreas, and breast [8]. Osteopon-pression by proximal tubular epithelium has been demonstrated

in both human and rodent models of renal injury in association tin is both expressed by and chemotactic for vascular
with macrophage influx. smooth muscle cells and monocyte/macrophages in vitro

Methods. We studied the expression of osteopontin protein and in vivo [5, 9–16]. In rodent and human kidney, osteo-
and mRNA in renal donor biopsies (N � 7) and renal transplant pontin is constitutively expressed by distal tubular epi-biopsies with cyclosporine A toxicity (N � 23) by immunohisto-

thelium [8, 17–19]. Up-regulation of osteopontin expres-chemistry and in situ hybridization. Serial tissue sections were
sion by proximal tubular epithelial cells has beenimmunostained with a monocyte/macrophage marker, CD68,

to demonstrate the pattern of macrophage infiltration. described in a number of rodent models of renal injury
Results. Strong osteopontin expression was observed in the in association with monocyte/macrophage infiltrates [15,

majority of pretransplant donor biopsies in the absence of any 20–25] and recently in a rat model of ischemia/reperfu-
macrophage infiltration. In the biopsies with cyclosporine toxic-

sion [26]. These studies have suggested that osteopontinity, osteopontin expression was widespread and demonstrated
is likely to be important in mediating mononuclear leu-moderate immunohistochemical signal intensity that did not
kocyte accumulation and localization in renal injuries.correlate with the number of interstitial macrophages present.

Conclusions. Strong osteopontin protein and mRNA expres- We previously demonstrated a correlation between
sion by tubular epithelium was observed in pretransplant donor up-regulated osteopontin expression in proximal tubular
biopsies and in biopsies with cyclosporine toxicity without an epithelium and the number of CD68-positive macro-inflammatory cell infiltration. Therefore, osteopontin expression

phages present in the tubulointerstitium of the maturealone is insufficient to serve as the principal mediator of intra-
human kidney [17]. In addition to being chemotactic forrenal monocyte/macrophage influx in the transplant setting.
macrophages, osteopontin has been shown to be ex-
pressed by macrophages in some settings, including cres-
centic glomerulonephritis [11, 27]. These chemotacticThe use of immunosuppressive medications, including
and trophic features of osteopontin, in addition to itscyclosporine, has revolutionized solid organ transplanta-
demonstrated up-regulation in the tubulointerstitium intion. Survival rates for renal grafts have steadily improved
a variety of rodent models of renal injury, suggest thatover the past decade [1]. However, soon after its use
osteopontin might be an important mediator of the mac-was established, the adverse effects of chronic cyclospo-
rophage influx. In this study, we examined donor biopsiesrine use became apparent [2, 3]. Renal cyclosporine tox-
and transplant biopsies with cyclosporine toxicity, bothicity is a lesion that can be characterized by afferent
of which demonstrate tubular damage but no macro-arteriolopathy, but that generally lacks additional spe-
phage influx.cific histologic features or prominent interstitial infiltra-

tion by inflammatory cells.
Osteopontin is a secreted phosphoprotein that has a METHODS

Tissue
Key words: transplantation, macrophages, renal injury, renal biopsy, Core needle biopsies were obtained from the Univer-
immunosuppression, nephrotoxicity. sity of Washington Medical Center (Seattle, WA, USA).
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Table 1. Donor biopsies Scoring
Case % OP OP score CD68/HPF Ten random cortical areas were scored by counting
1 26.1 0 3.4 the total number of tubular cross-sections in each high-
2 49.9 1 9.5 power field (HPF) and the number of tubular cross-
3 8.8 1 5.9

sections that demonstrated positive osteopontin expres-4 91.9 2 6.8
5 66.7 2 10.3 sion. One HPF is equivalent to an area of 0.173 mm2 as
6 80.7 3 15.2 determined using a stage micrometer (Olympus, Tokyo,
7 94.0 3 8.1

Japan). These data are shown as the percentage of theAverage 59.7 1.7 8.5
total tubular cross-sections that were positive for osteo-Abbreviations are: OP, osteopontin; HPF, high-power field.
pontin. Additionally, the intensity of staining in proximal
tubular segments was graded semiquantitatively, with a
scale of 0, no staining; 1�, weak staining; 2�, moderate

pressive agents). The study included biopsies of donor staining; and 3�, strong staining. CD68-positive mono-
kidneys obtained immediately prior to transplantation cyte/macrophages were counted in ten equivalent high-
(N � 7) and biopsies with cyclosporine toxicity (N � 23). power cortical fields and were expressed as the average
Most of the biopsies included a portion of tissue fixed number of CD68-positive cells present per HPF.
in 10% neutral-buffered formalin and another portion Statistical analysis was performed using the InStat�
fixed in methyl Carnoy’s solution (60% methanol, 30% Program, Version 3.0 for Windows (Intuitive Software
chloroform, and 10% acetic acid). A subset of the cases for Science, San Diego CA, USA). The nonparametric
with cyclosporine toxicity was available fixed only in Spearman rank correlation test was used to determine
10% neutral-buffered formalin (N � 11). All fixed tissues the correlation between osteopontin score and the num-
were processed and embedded in paraffin according to ber of CD68-positive cells present in the tubulointerstit-
standard protocols. ium. Additionally, the nonparametric Kruskal–Wallis

test was used to compare the means of osteopontin scoresAntibodies
and the percentage of osteopontin-positive tubules.

LF7 is a rabbit polyclonal antibody directed against the
intact osteopontin (bone sialoprotein I) protein molecule
isolated from bone [28]. RESULTS

PGM1 (Dako, Carpenteria, CA, USA) is a well-char- All renal biopsies
acterized murine monoclonal antibody directed against

All renal biopsies in this study (N � 30) were scoredthe CD68 epitope present on human monocytes and mac-
for both the percentage of osteopontin positive tubulesrophages [29]. The specificity and use of these antibodies
and osteopontin immunostaining intensity, as well ashas been previously described [17, 27].
the number of interstitial macrophages. Distal tubules
served as an internal control for the osteopontin immu-Immunohistochemistry
nostaining, as they constitutively express osteopontinImmunohistochemistry was performed using a stan-
protein and did so uniformly in this study. In all of thedard avidin-biotin peroxidase protocol as previously de-
cases studied, the distribution pattern of osteopontinscribed [17, 27]. Double-label immunohistochemistry
mRNA expression demonstrated by in situ hybridizationwas also performed on the methyl Carnoy’s fixed sec-
correlated with the immunostaining pattern observed.tions. First, slides were immunostained using LF7 and

3,3�-diaminobenzidine to visualize osteopontin with a
Donor renal biopsiesbrown reaction product. Following a phosphate-buffered

The donor biopsies used in this study generally hadsaline (PBS) rinse and further block with 3% hydrogen
no specific pathologic abnormality with no prominentperoxide, the slides were incubated sequentially with
mononuclear inflammatory cell infiltrate or tubulitis. Twoanti-CD68 overnight at 4�C, horseradish peroxide-conju-
of the biopsies showed mild arteriosclerosis, and one ofgated anti-mouse antibody (Dako) and then developed
the biopsies had focal glomerulosclerosis. Osteopontinwith the Vector VIP substrate kit (Vector, Burlingame,
expression by proximal tubules in the donor control tis-CA, USA) to give a purple color reaction.
sues varied widely, from no or little detectable expression

In situ hybridization (N � 3) to widespread strong expression (N � 4; Table
1 and Fig. 1). The number of CD68-positive monocyte/In situ hybridization was performed using a riboprobe
macrophages also varied considerably from one biopsytranscribed using human osteopontin cDNA in plasmid
to another, from 3.4 to more than 15 cells per HPF (meanpBluescript SK(�) (plasmid OP-10), which was obtained
8.4). The number of donor biopsies available for studyfrom Dr. Larry Fisher (National Institutes of Health, Be-

thesda, MD, USA) [30], as previously described [17, 27]. was too low to calculate a correlation. As shown in



Fig. 1. Osteopontin expression in pretransplant donor biopsies. Replicate tissue sections from two pretransplant donor biopsies immunostained
with anti-osteopontin antibody (A and C) and anti-CD68 antibody (B and D). Biopsies demonstrate widespread, strong immunohistochemical
staining for osteopontin by all tubular epithelium with a small amount of monocyte/macrophage accumulation.

Figure 1, strong osteopontin protein expression by proxi-
mal tubular epithelium was often present in the absence

Table 2. Cyclosporing toxicity biopsies of a prominent macrophage accumulation. This pattern
was also seen in the double-label immunohistochemistryCase % OP OP score CD68/HPF
(data not shown).�5 CD68/HPF

1 79 1 0.9
Cyclosporine toxicity2 53.2 1 1.7

3 66 2 2 The biopsies with cyclosporine toxicity generally had4 91 2 3
a small, focal interstitial mononuclear inflammatory cell5 57 2 3.5

6 55.6 1 4.5 infiltrate and variable degrees of tubular atrophy and
7 34.8 1 4.6 occasionally demonstrated a pattern of striped intersti-Average 62.4 1.4 2.9

tial fibrosis. All of the biopsies had some degree of arteri-5–15 CD68/HPF
8 52.5 1 5.5 olar hyalinosis, predominantly subendothelial.
9 88.6 2 5.6 In the majority of biopsies with cyclosporine toxicity10 87 2 5.7

that we examined, osteopontin protein and mRNA ex-11 56 2 6.9
12 73.4 1 7.1 pression by proximal tubules was widespread and exhib-
13 61 1 7.4 ited low-to-moderate signal intensity (Table 2 and Fig. 2).14 71 2 7.7

In contrast to the widespread osteopontin expression, the15 97 2 10.7
16 84.5 2 13.3 number of macrophages present in the tubulointersti-
17 90 2 13.3 tium was generally low and was independent of the inten-18 63 1 13.8

sity of osteopontin expression by proximal tubular epi-19 90 3 14.9
Average 76.2 1.8 9.3 thelium, as no significant correlation could be discerned

�15 CD68/HPF (r � 0.18, P � 0.3920). A weak but significant correlation20 61.6 1 16.3
was found between the overall percentage of osteopon-21 95 1 18.4

22 81.9 2 19.8 tin-positive tubules and the number of macrophages (r �
23 73 3 46 0.45, P � 0.0292). As shown in Table 2, when the biopsiesAverage 77.9 1.8 25.1

were separated into groups based on the number of inter-Biopsies are divided into three groups based on the number of macrophages
present per high-power field (HPF). OP is osteopontin. stitial macrophages present (less than 5 per HPF, 5 to
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Fig. 2. Osteopontin expression in patients with cyclosporine toxicity.
(A and B) Light- and dark-field views of in situ hybridization. Osteopon-
tin mRNA expression is widespread but moderate in tubular epithelium.
(C) Immunohistochemistry with anti-osteopontin antibody on a repli-
cate tissue section shows a similar pattern of osteopontin protein expres-
sion. Strong, constitutive osteopontin expression can be seen in the
distal tubular segment (d) adjacent to the glomerulus.

Fig. 3. Focal, strong osteopontin expression in patients with cyclosporine toxicity. Immunohistochemistry on a biopsy with cyclosporine toxicity
demonstrates focal up-regulation of osteopontin protein expression by tubular epithelium (A) in association with a focal, modest macrophage
influx (B).

15 per HPF, and greater than 15 per HPF), there was in vivo and in vitro [15, 16]. In addition, osteopontin
no statistically significant difference in the observed os- expression by tubular epithelium has been found to be
teopontin expression. Focal, strong expression of osteo- up-regulated in a number of models of renal injury [20–
pontin with corresponding focal accumulations of CD68- 23, 31]. We have previously shown that osteopontin ex-
positive macrophages was apparent in several of the pression by proximal tubular epithelium in histologically
cyclosporine toxicity biopsies studied (Fig. 3). normal human kidney tissue is very low to absent and

is increased in association with interstitial macrophage
DISCUSSION infiltration [17]. Studies utilizing osteopontin knockout

mice, however, have had conflicting results dependingOsteopontin is a secreted phosphoprotein that has
been shown to be chemotactic for macrophages, both on the injury model studied. In one study, osteopontin
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knockout mice were shown to have reduced macrophage tion after a period of cold ischemia and in patients with
cyclosporine toxicity. This up-regulation was manifestedinflux in a model of obstructive nephropathy [21]. How-

ever, Bonvini et al found no difference between osteo- both by the increased numbers of osteopontin-positive
proximal tubules and an increase in the immunohisto-pontin knockout mice and littermate controls in a model

of anti-glomerular basement membrane nephritis [32]. chemical and in situ hybridization signal for osteopontin
peptide and mRNA within positive tubules. ConstitutiveIn this study, we examined the expression of osteopon-

tin protein and mRNA in both pretransplant donor biop- expression of osteopontin by distal tubules was unaf-
fected by these various conditions. Monocyte influx wassies and biopsies with cyclosporine toxicity. These are

both conditions with tubular injury but are usually not not associated with up-regulated osteopontin expression
in these settings. In aggregate, our findings indicate thatassociated with prominent macrophage influx. In the ma-

jority of donor biopsies, there was strong expression of osteopontin expression is a ubiquitous and nonspecific
marker of tubular injury and, in some settings, is insuffi-osteopontin protein and mRNA by proximal tubular

epithelium, as demonstrated by the intensity of immuno- cient to produce macrophage infiltration.
histochemistry and in situ hybridization signal, as well
as an increase in the total number of positive tubular ACKNOWLEDGMENTS
segments when compared with normal human kidneys This work was supported by an O’Brien Kidney Research Center

of Excellence grant (NIH grant DK47659) and NSF grant EEC9529161.[17]. This increase in osteopontin expression was not
associated with macrophage accumulation.

Reprint requests to Charles E. Alpers, M.D., Department of Pathol-
Ischemia is known to induce osteopontin expression ogy, Box 356100, University of Washington Medical Center, Seattle,

Washington 98195, USA.in renal proximal tubular epithelium [26, 33]. In a rat
E-mail: calp@u.washington.edumodel of renal ischemia, it has been shown that distal

tubules rapidly increase their osteopontin expression,
REFERENCESwith a maximal expression at 24-hours postischemia,

while proximal tubules show a delayed response, with 1. Hariharan S, Johnson CP, Bresnahan BA, et al: Improved graft
survival after renal transplantation in the United States, 1988 tomaximal expression after five to seven days [26]. Noiri
1996. N Engl J Med 342:605–612, 2000

et al found that the osteopontin knockout mouse demon- 2. Myers BD, Sibley R, Newton L, et al: The long-term course of
cyclosporine-associated chronic nephropathy. Kidney Int 33:590–strated a reduced tolerance to renal ischemia and postu-
600, 1988lated that osteopontin may serve as a protective molecule

3. Myers BD, Ross J, Newton L, et al: Cyclosporine-associated
in this setting [34]. Although we have no data available chronic nephropathy. N Engl J Med 311:699–705, 1984

4. Denhardt DT, Guo X: Osteopontin: A protein with diverse func-on the cold ischemia time of the renal grafts included in
tions. FASEB J 7:1475–1482, 1993this study and, therefore, cannot correlate ischemia to

5. Liaw L, Almeida M, Hart CE, et al: Osteopontin promotes vascu-
the level of osteopontin expression observed, an induc- lar cell adhesion and spreading and is chemotactic for smooth
tion via cold ischemia appears to be likely. This up- muscle cells in vitro. Circ Res 74:214–224, 1994

6. Scatena M, Almeida M, Chaisson ML, et al: NF-kappaB mediatesregulation would be consistent with a response to isch-
alphavbeta3 integrin-induced endothelial cell survival. J Cell Biolemia and may be protective for the tubular epithelial cells. 141:1083–1093, 1998

Renal cyclosporine toxicity is a lesion that can be char- 7. Butler WT: The nature and significance of osteopontin. Connect
Tissue Res 23:123–136, 1989acterized by afferent arteriolopathy, but that generally

8. Brown LF, Berse B, Van de Water L, et al: Expression andlacks additional distinctive histologic features or promi- distribution of osteopontin in human tissues: Widespread associa-
nent interstitial infiltration by inflammatory cells. In vivo, tion with luminal epithelial surfaces. Mol Biol Cell 3:1169–1180,

1992cyclosporine acts as a vasoconstrictive agent and has been
9. Giachelli C, Bae N, Lombardi D, et al: Molecular cloning anddemonstrated in animal models to increase tubular osteo- characterization of 2B7, a rat mRNA which distinguishes smooth

pontin expression [23, 35, 36]. In this study, we also found muscle cell phenotypes in vitro and is identical to osteopontin
(secreted phosphoprotein I, 2aR). Biochem Biophys Res Communan increased number of osteopontin-positive tubules
177:867–873, 1991with widespread, moderate expression of osteopontin 10. Giachelli CM, Bae N, Almeida M, et al: Osteopontin is elevated

protein and mRNA in biopsies with the diagnosis of during neointima formation in rat arteries and is a novel component
of human atherosclerotic plaques. J Clin Invest 92:1686–1696, 1993cyclosporine toxicity. The staining intensity did not cor-

11. Murry CE, Giachelli CM, Schwartz SM, et al: Macrophagesrelate with the number of interstitial macrophages pres-
express osteopontin during repair of myocardial necrosis. Am J

ent in the biopsies. Occasionally, the biopsies with cyclo- Pathol 145:1450–1462, 1994
12. McKee MD, Nanci A: Secretion of osteopontin by macrophagessporine toxicity demonstrated a pattern of focal strong

and its accumulation at tissue surfaces during wound healing inosteopontin expression in association with very focal
mineralized tissues: A potential requirement for macrophage adhe-

macrophage accumulations. This may reflect localized sion and phagocytosis. Anat Rec 245:394–409, 1996
13. Ikeda T, Shirasawa T, Esaki Y, et al: Osteopontin mRNA isischemia induced by the vasoconstrictive effects of cyclo-

expressed by smooth muscle-derived foam cells in human athero-sporine.
sclerotic lesions of the aorta. J Clin Invest 92:2814–2820, 1993

In summary, osteopontin expression was up-regulated 14. O’Brien ER, Garvin MR, Stewart DK, et al: Osteopontin is
synthesized by macrophage, smooth muscle, and endothelial cellsin proximal tubules in renal allografts prior to transplanta-



Hudkins et al: Osteopontin and nephrotoxicity640

in primary and restenotic human coronary atherosclerotic plaques. expression in rat crescentic glomerulonephritis. Kidney Int 53:136–
145, 1998Arterioscler Thromb 14:1648–1656, 1994

26. Persy VP, Verstrepen WA, Ysebaert DK, et al: Differences in15. Giachelli CM, Lombardi D, Johnson RJ, et al: Evidence for
osteopontin up-regulation between proximal and distal tubulesa role of osteopontin in macrophage infiltration in response to
after renal ischemia/reperfusion. Kidney Int 56:601–611, 1999pathological stimuli in vivo. Am J Pathol 152:353–358, 1998

27. Hudkins KL, Giachelli CM, Eitner F, et al: Osteopontin expres-16. Singh RP, Patarca R, Schwartz J, et al: Definition of a specific
sion in human crescentic glomerulonephritis. Kidney Int 57:105–interaction between the early T lymphocyte activation 1 (Eta-1)
116, 2000protein and murine macrophages in vitro and its effect upon macro-

28. Fisher LW, Hawkins GR, Tuross N, et al: Purification and partialphages in vivo. J Exp Med 171:1931–1942, 1990
characterization of small proteoglycans I and II, bone sialoproteins17. Hudkins KL, Giachelli CM, Cui Y, et al: Osteopontin expression
I and II, and osteonectin from the mineral compartment of devel-in fetal and mature human kidney. J Am Soc Nephrol 10:444–457, oping human bone. J Biol Chem 262:9702–9708, 19871999 29. Falini B, Flenghi L, Pileri S, et al: PG-M1: A new monoclonal

18. Lopez CA, Hoyer JR, Wilson PD, et al: Heterogeneity of osteo- antibody directed against a fixative-resistant epitope on the macro-
pontin expression among nephrons in mouse kidneys and enhanced phage-restricted form of the CD68 molecule. Am J Pathol 142:
expression in sclerotic glomeruli. Lab Invest 69:355–363, 1993 1359–1372, 1993

19. Madsen KM, Zhang L, Abu Shamat AR, et al: Ultrastructural 30. Young MF, Kerr JM, Termine JD, et al: cDNA cloning, mRNA
localization of osteopontin in the kidney: Induction by lipopolysac- distribution and heterogeneity, chromosomal location, and Rflp
charide. J Am Soc Nephrol 8:1043–1053, 1997 analysis of human osteopontin (Opn). Genomics 7:491–502, 1990

20. Magil AB, Pichler RH, Johnson RJ: Osteopontin in chronic puro- 31. Eddy AA, Giachelli CM: Renal expression of genes that promote
interstitial inflammation and fibrosis in rats with protein-overloadmycin aminonucleoside nephrosis. J Am Soc Nephrol 8:1383–1390,
proteinuria. Kidney Int 47:1546–1557, 19951997

32. Bonvini JM, Schatzmann U, Beck-Schimmer B, et al: Lack of in21. Ophascharoensuk V, Giachelli CM, Gordon K, et al: Obstruc-
vivo function of osteopontin in experimental anti-GBM nephritis.tive uropathy in the mouse: Role of osteopontin in interstitial
J Am Soc Nephrol 11:1647–1655, 2000fibrosis and apoptosis. Kidney Int 56:571–580, 1999

33. Kleinman JG, Worcester EM, Beshensky AM, et al: Upregula-22. Pichler R, Giachelli CM, Lombardi D, et al: Tubulointerstitial
tion of osteopontin expression by ischemia in rat kidney. Ann NYdisease in glomerulonephritis: Potential role of osteopontin (uro-
Acad Sci 760:321–323, 1995pontin). Am J Pathol 144:915–926, 1994 34. Noiri E, Dickman K, Miller F, et al: Reduced tolerance to acute

23. Pichler RH, Franceschini N, Young BA, et al: Pathogenesis of renal ischemia in mice with a targeted disruption of the osteopontin
cyclosporine nephropathy: Roles of angiotensin II and osteopontin. gene. Kidney Int 56:74–82, 1999
J Am Soc Nephrol 6:1186–1196, 1995 35. Bennett WM: Insights into chronic cyclosporine nephrotoxicity.

24. Yu XQ, Nikolic-Paterson DJ, Mu W, et al: A functional role for Int J Clin Pharmacol Ther 34:515–519, 1996
osteopontin in experimental crescentic glomerulonephritis in the 36. Young BA, Burdmann EA, Johnson RJ, et al: Cellular prolifera-
rat. Proc Assoc Am Physicians 110:50–64, 1998 tion and macrophage influx precede interstitial fibrosis in cyclospo-

rine nephrotoxicity. Kidney Int 48:439–448, 199525. Lan HY, Yu XQ, Yang N, et al: De novo glomerular osteopontin


